

Solving Multi-Step Equations

A previous lesson focused on basic two-step equations.

One type of two-step equations had two constant terms, one on each side of the equal sign.

Solve:

$$2x - 3 = 11 \quad \text{One constant term is on each side of the equal sign.}$$

$$+3 \quad +3 \quad \text{Use the inverse operation } + 3 \text{ to collect the constant terms.}$$

$$2x = 14 \quad \text{Rewrite.}$$

$$\div 2 \quad \div 2 \quad \text{Split the variable term.}$$

$$x = 7$$

Another type of two-step equations had two variable terms, one on each side of the equal sign.

Solve:

$$5x = 3x + 14 \quad \text{One variable term is on each side of the equal sign.}$$

$$-3x \quad -3x \quad \text{Use the inverse operation } - 3x \text{ to collect the variable terms.}$$

$$2x = 14 \quad \text{Rewrite.}$$

$$\div 2 \quad \div 2 \quad \text{Split the variable term.}$$

$$x = 7$$

Multi-Step Equations

Multi-step equations have a variety of structures. One class of multi-step equations is the three-step equation. A basic three-step equation has two variable terms, one on each side of the equal sign, and two constant terms, one on each side of the equal sign.

Solve:

$$\begin{array}{rcl}
 5x - 3 & = & 3x + 11 & \text{One constant term is on each side of the equal sign.} \\
 & + 3 & + 3 & \text{Use the inverse operation } + 3 \text{ to collect the constant terms.} \\
 5x & = & 3x + 14 & \text{Rewrite. One variable term is on each side of the equal sign} \\
 - 3x & - 3x & & \text{Use the inverse operation } - 3x \text{ to collect the variable terms.} \\
 2x & = & 14 & \text{Rewrite.} \\
 \div 2 & \div 2 & & \text{Remove the coefficient by using the inverse operation } \div 2. \\
 x & = & 7
 \end{array}$$

Note: The first step in solving this equation was to add 3 to both sides of the equation. The problem can be solved using three alternative first steps.

Activity:

Solve the equation $5x - 3 = 3x + 11$ three more times. Each solution must have a different first step. What can you say about the final answer in each case?

Exercises:

Solve the following equations. Remember to check your answer.

1. $7x - 3 = 4x + 3$	2. $5y + 9 = 2y - 3$
3. $-4m + 2 = 6m + 12$	4. $-8t - 5 = -9t - 7$
5. $3r - 2 = -5r + 14$	6. $6p - 7 = -6p - 7$
7. $5 - y = 3 - 2y$	8. $3 - 2t = 5 - 5t$
9. $7 - 5p = 6 + p$	10. $-11 + 6x = -6x + 13$

In this next group of questions you may be required to ‘simplify’ the equation ‘before’ you begin to use inverse operations. Remember to check your answer.

11. $4x + 12 - 9 = 3 + 2x - 6$	12. $1 + 4x - 4 = 3x - 6 + 6$
13. $-2x - 6 = 12 + 3x + 2$	14. $x + 4x - 8 = 6 + x - 3x$
15. $3n - 6 + 12 = 4n + 8 - 2n$	16. $11 - 8 - 6x = -4x + 7$