

## 5.1 & 5.2 Frequency Tables, Histograms & Freq Polygons

### Frequency Tables, Histograms, & Frequency Polygons [5.1 & 5.2]

Are you ready for some STATS???? Let's start by exploring the similarities & differences between 2 sets of data.

| Measured Lifespans of 30 Car Batteries (years) |     |     |     |     |         |     |     |     |     |
|------------------------------------------------|-----|-----|-----|-----|---------|-----|-----|-----|-----|
| Brand X                                        |     |     |     |     | Brand Y |     |     |     |     |
| 5.1                                            | 7.3 | 6.9 | 4.7 | 5.0 | 5.4     | 6.3 | 4.8 | 5.9 | 5.5 |
| 6.2                                            | 6.4 | 5.5 | 5.7 | 6.8 | 4.7     | 6.0 | 4.5 | 6.6 | 6.0 |
| 6.0                                            | 4.8 | 4.1 | 5.2 | 8.1 | 5.0     | 6.5 | 5.8 | 5.4 | 5.1 |
| 6.3                                            | 7.5 | 5.0 | 5.7 | 8.2 | 5.7     | 6.8 | 5.6 | 4.9 | 6.1 |
| 3.3                                            | 3.1 | 4.3 | 5.9 | 6.6 | 4.9     | 5.7 | 6.2 | 7.0 | 5.8 |
| 5.8                                            | 6.4 | 6.1 | 4.6 | 5.7 | 6.8     | 5.9 | 5.3 | 5.6 | 5.9 |

Vocab:

| Mean                                                                                                                         | Median                                                                                                               | Mode                                                                              |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| "The average"<br>add all values and<br>divide by how many<br>values there are.                                               | "The middle"<br>line values up in order<br>and cross off from<br>both sides.                                         | "most common"<br>occurs most often<br>in the data                                 |
| Brand X: $(5.1 + 7.3 + 6.9 + 4.7 + 5.0 + 6.2 + 6.4 + 5.5 + 5.7 + 6.8) = 59.6$<br>$\frac{59.6}{10} = 6.0$<br>$\boxed{X: 6.0}$ | X:<br><del>4.7, 5.0, 5.1, 5.5, 5.7, 6.2, 6.4, 6.8, 6.9, 7.3</del><br>$\frac{5.7 + 6.2}{2} = 5.95$<br>$\boxed{= 6.0}$ | X: look at chart<br>no values occur<br>more than once<br>$\boxed{X: \text{none}}$ |
| Brand Y: $\frac{55.7}{10} = 5.6$<br>$\boxed{y: 5.6}$                                                                         | Y: $\boxed{5.7}$                                                                                                     | y: 6.0 occurs<br>2 times<br>$\boxed{y: 6.0}$                                      |

Range: Highest # "minus" Lowest #

$$X: 7.3 - 4.7 = 2.6$$

$\uparrow$   
range of X

$$y: 6.6 - 4.5 = 2.1$$

$\uparrow$   
range of y

# Example 1

Foundations 11

Unit 4: Lesson 1

| Maximum Water Flow Rates for the Red River, from 1950 to 1999, Measured at Redwood Bridge* |                               |      |                               |      |                               |      |                               |
|--------------------------------------------------------------------------------------------|-------------------------------|------|-------------------------------|------|-------------------------------|------|-------------------------------|
| Year                                                                                       | Flow Rate (m <sup>3</sup> /s) | Year | Flow Rate (m <sup>3</sup> /s) | Year | Flow Rate (m <sup>3</sup> /s) | Year | Flow Rate (m <sup>3</sup> /s) |
| 1950                                                                                       | 3058                          | 1960 | 1965                          | 1970 | 2280                          | 1980 | 296                           |
| 1951                                                                                       | 1065                          | 1961 | 481                           | 1971 | 1526                          | 1981 | 159                           |
| 1952                                                                                       | 1008                          | 1962 | 1688                          | 1972 | 1589                          | 1982 | 1458                          |
| 1953                                                                                       | 257                           | 1963 | 100                           | 1973 | 200                           | 1983 | 1393                          |
| 1954                                                                                       | 100                           | 1964 | 1002                          | 1974 | 2718                          | 1984 | 1048                          |
| 1955                                                                                       | 1521                          | 1965 | 1809                          | 1975 | 1671                          | 1985 | 100                           |
| 1956                                                                                       | 1974                          | 1966 | 2498                          | 1976 | 1807                          | 1986 | 1812                          |
| 1957                                                                                       | 100                           | 1967 | 1727                          | 1977 | 187                           | 1987 | 2339                          |
| 1958                                                                                       | 100                           | 1968 | 100                           | 1978 | 1750                          | 1988 | 100                           |
| 1959                                                                                       | 100                           | 1969 | 2209                          | 1979 | 3030                          | 1989 | 1390                          |
|                                                                                            |                               |      |                               |      |                               |      |                               |
|                                                                                            |                               |      |                               |      |                               |      |                               |

Example 1: Determine the water flow rate that is associated with serious flooding by creating a frequency distribution. (table or graph)

\* a frequency distribution should have between 5 and 12 intervals

to determine intervals to use, we look at the range

$$\begin{aligned} \text{Highest} &= 4587 \\ \text{Lowest} &= 159 \end{aligned}$$

$$\begin{aligned} \text{Range} &= 4587 - 159 \\ &= 4428 \text{ m}^3/\text{s} \end{aligned}$$

$$\begin{aligned} 10 \text{ intervals} \\ \frac{4428}{10} = 442.8 \end{aligned}$$

500 is a nicer interval

Frequency Distribution Table

| Flow Rate (m <sup>3</sup> /s) intervals | Tally | Frequency (# of years) | Midpoint of the interval |
|-----------------------------------------|-------|------------------------|--------------------------|
| 0-500                                   |       | 6                      | 250                      |
| 500-1000                                |       | 11                     | 750                      |
| 1000-1500                               |       | 9                      | 1250                     |
| 1500-2000                               |       | 14                     | 1750                     |
| 2000-2500                               |       | 5                      | 2250                     |
| 2500-3000                               |       | 1                      | 2750                     |
| 3000-3500                               |       | 3                      | 3250                     |
| 3500-4000                               |       | 0                      | 3750                     |
| 4000-4500                               |       | 0                      | 4250                     |
| 4500-5000                               |       | 1                      | 4750                     |

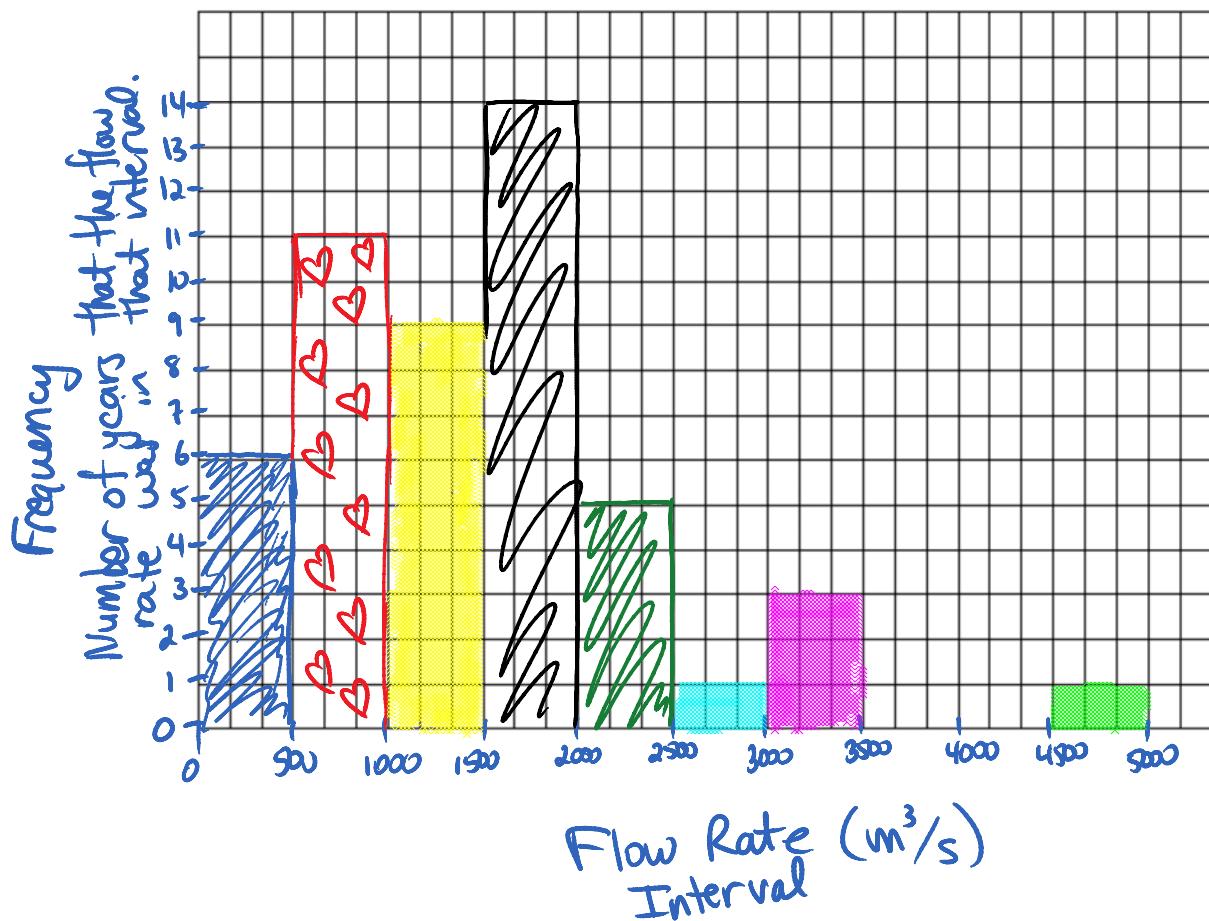
a count of the # of times the max. water flow rates happened

Using the same information from above, create a Histogram. = bar graph

Things to remember when creating Histograms

- graph of a frequency table
- equal intervals on the horizontal (x) axis
- frequencies on the vertical (y) axis
- no space between bars
- Must have title and axes labelled.

### Red River Flow Rates (1950-1999)

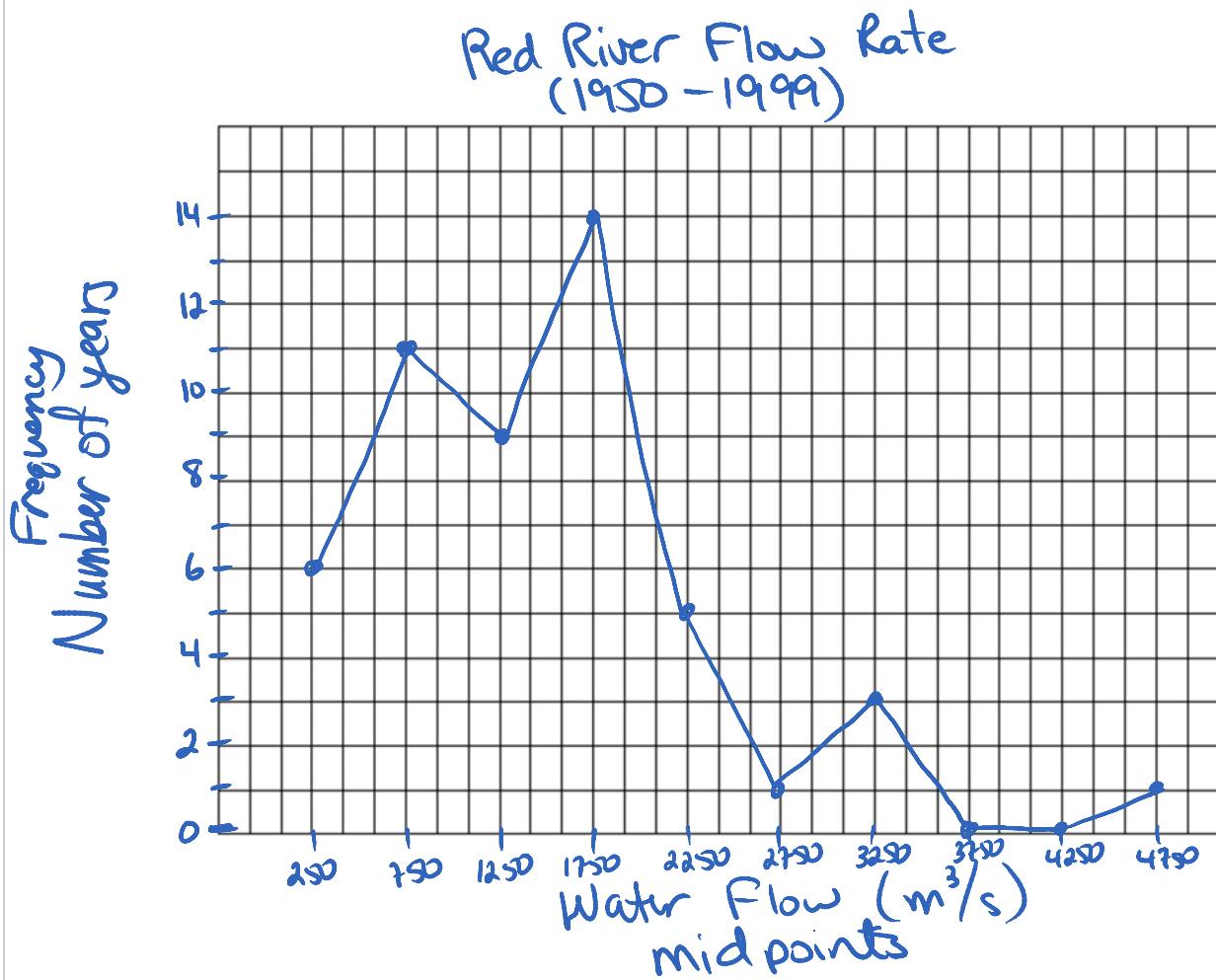


Look what else we can do with the same information... a Frequency Polygon!

water flow midpoints VS # of years 

A Quick How To: the Frequency Polygon

- use the midpoints of the intervals
- connect points using straight lines
- title and labelled axes !!



Practice  
pg 211 #1, 2  
pg 222 #4

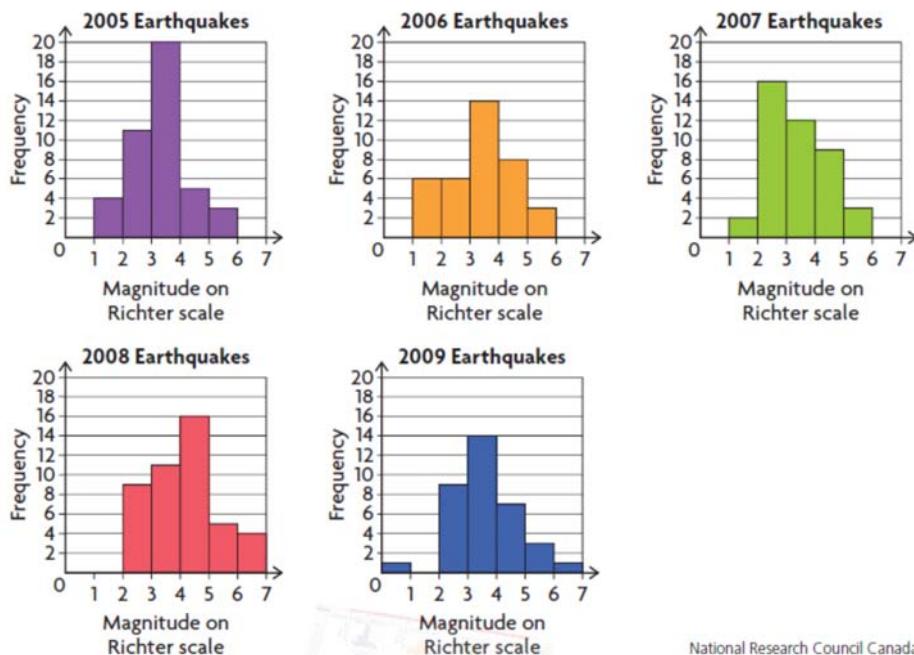
With Freq. Polygon can graph more than one line  
so can compare data more easily. ☺

**Example 2:**

Which of these years could have had the most damage from earthquakes?

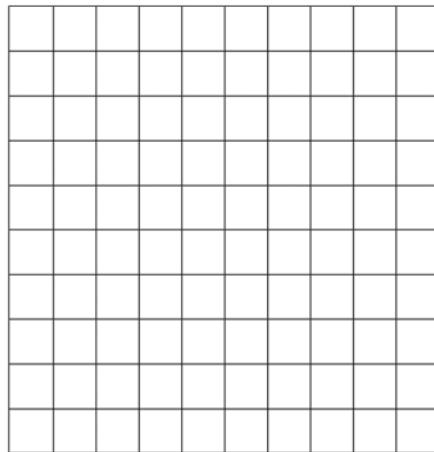
| Understanding the Richter Scale* |                                                            |
|----------------------------------|------------------------------------------------------------|
| Magnitude                        | Effects                                                    |
| less than 3.0                    | recorded by seismographs; not felt                         |
| 3.0–3.9                          | feels like a passing truck; no damage                      |
| 4.0–4.9                          | felt by nearly everyone; movement of unstable objects      |
| 5.0–5.9                          | felt by all; considerable damage to weak buildings         |
| 6.0–6.9                          | difficult to stand; partial collapse of ordinary buildings |
| 7.0–7.9                          | loss of life; destruction of ordinary buildings            |
| more than 7.9                    | widespread loss of life and destruction                    |

\*Every unit increase on the Richter scale represents an earthquake 10 times more powerful. For example, an earthquake measuring 5.6 is 10 times more powerful than an earthquake measuring 4.6.



National Research Council Canada

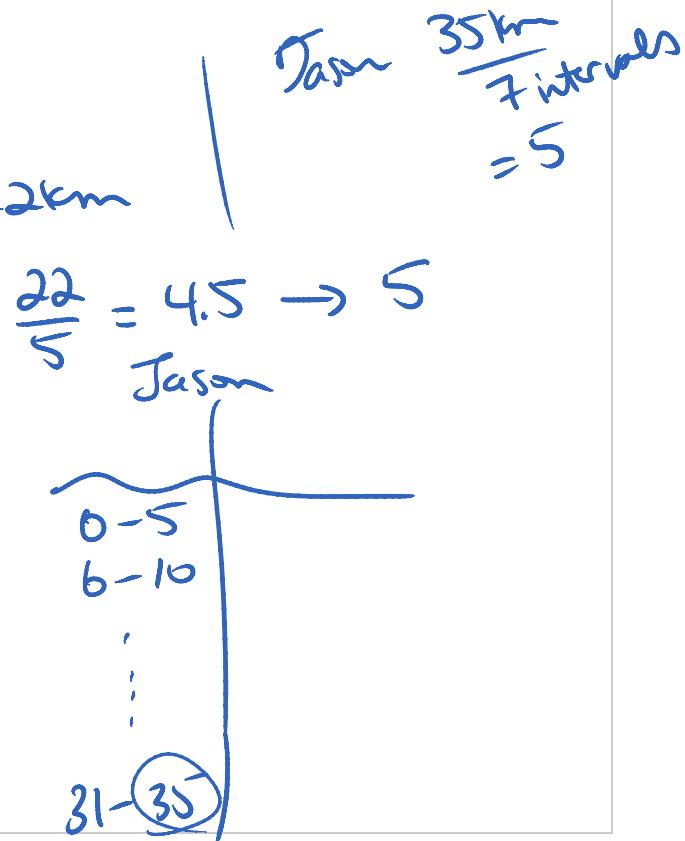
Frequency Polygon:



pg 222 #8

Holly  $22\text{max} - 0\text{min} = 22\text{km}$

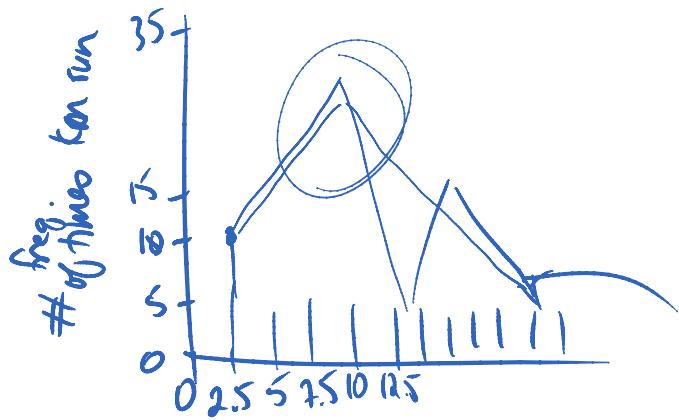
| mid pt | (interval) | # of km run | # of times this many km's were run |
|--------|------------|-------------|------------------------------------|
| 2.5    | 0-5        | 11          |                                    |
| 7.5    | 6-10       | 30          |                                    |
| 12.5   | 11-15      | 19          |                                    |
| 17.5   | 16-20      | 8           |                                    |
| 22.5   | 21-25      | 1           |                                    |



run

|





intervals  
mid pts

## Standard Deviation [5.3]

5 = Standard deviation: a measure of the dispersion or scatter of data values in relation to the mean.

$$\sigma = \sqrt{\frac{\sum(x - \bar{x})^2}{n}}$$

$\sigma$  (read as sigma - lower case): represents the standard deviation of the data

$\Sigma$  (read as sigma - upper case): summation operator

$x$ : each data value

$\bar{x}$  (read as x bar): represents the mean of the data  $\text{average} = \frac{\text{add all #'s together}}{\text{divide by # of data values}} = \bar{x}$

$n$ : the number of data values

the smaller the standard deviation ( $\sigma$ ),  
 the more consistent the data.  
 → more of the data #'s are close  
 to the average (mean)

## Example 1:

Brendan works part-time in the canteen at his local community centre. One of his tasks is to unload delivery trucks. He wondered about the accuracy of the mass measurements given on two cartons that contained sunflower seeds. He decided to measure the masses of the 20 bags in the two cartons. One carton contained 227 g bags, and the other carton contained 454 g bags.

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$$

| Masses of 227 g Bags (g) |     |     |     |
|--------------------------|-----|-----|-----|
| 228                      | 220 | 233 | 227 |
| 230                      | 227 | 221 | 229 |
| 224                      | 235 | 224 | 231 |
| 226                      | 232 | 218 | 218 |
| 229                      | 232 | 236 | 223 |

| Masses of 454 g Bags (g) |     |     |     |
|--------------------------|-----|-----|-----|
| 458                      | 445 | 457 | 458 |
| 452                      | 457 | 445 | 452 |
| 463                      | 455 | 451 | 460 |
| 455                      | 453 | 456 | 459 |
| 451                      | 455 | 456 | 450 |

How can measures of dispersion be used to determine if the accuracy of measurement is the same for both bag sizes?

① Start by finding the mean (avg) of the population (add up,  $\div$  #)

$$\bar{x} = \frac{4543}{20 \text{ bags}} = 227.15 \text{ g} \quad n = 20$$

| X   | $(x - \bar{x})^2$  |              |
|-----|--------------------|--------------|
|     | $(228 - 227.15)^2$ | $= (0.85)^2$ |
| 228 | 0.7225             | $= 0.7225$   |
| 230 | 8.1225             |              |
| 224 | 9.9225             |              |
| 226 | 1.3225             |              |
| 229 | 3.4225             |              |
| 220 | 51.1225            |              |
| 227 | 0.0225             |              |
| 235 | 61.6225            |              |
| 232 | 23.5225            |              |
| 232 | 23.5225            |              |
| 233 | 34.2225            |              |
| 221 | 37.8225            |              |
| 224 | 9.9225             |              |
| 218 | 83.7225            |              |

$$\begin{array}{|c|c|} \hline X & (x - \bar{x})^2 \\ \hline 236 & 78.3225 \\ 227 & 0.0225 \\ 229 & 3.4225 \\ 231 & 14.8225 \\ 218 & 83.7225 \\ 223 & 17.2225 \\ \hline \end{array}$$

③ add all  $(x - \bar{x})^2$  together

$$\sum (x - \bar{x})^2 = 546.55$$

$$\begin{aligned} \text{④ } \sigma &= \sqrt{\frac{\sum (x - \bar{x})^2}{n}} \\ &= \sqrt{\frac{546.55}{20}} \\ \sigma_{227 \text{ g}} &= 5.22757 \\ \sigma_{454 \text{ g bags}} &= 4.4988 \end{aligned}$$

∴ the 454 g bags are more consistently close to 454 g. since  $\sigma$  is smaller

Pg 9

Example 2:

Angèle conducted a survey to determine the number of hours per week that Grade 11 males in her school play video games. She determined that the mean was 12.84 h, with a standard deviation of 2.16 h.

Janessa conducted a similar survey of Grade 11 females in her school. She organized her results in this frequency table. Compare the results of the two surveys.

| Gaming Hours per Week<br>for Grade 11 Females |           |
|-----------------------------------------------|-----------|
| Interval Hours                                | Frequency |
| 3–5                                           | 7 girls   |
| 5–7                                           | 11 girls  |
| 7–9                                           | 16 "      |
| 9–11                                          | 19        |
| 11–13                                         | 12        |
| 13–15                                         | 5         |

midpoint

$$\bar{x} = \frac{(4 \text{ hrs} \cdot 7 \text{ girls}) + (6 \text{ hrs} \cdot 11 \text{ girls}) + (8 \text{ hrs} \cdot 16) + (10 \cdot 19) + (12 \cdot 12) + (14 \cdot 5)}{70}$$

$$\bar{x} = 9 \quad n = 70$$

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$$

$$\sigma = \sqrt{\frac{542}{70}}$$

$$\sigma = 2.78$$

$$\begin{aligned} 70 \\ \text{total # of girls} \\ 7 + 11 + 16 + 19 + 12 + 5 \end{aligned}$$

$$\begin{array}{|c|c|c|} \hline x & (x - \bar{x})^2 & xf = \\ \hline 4 & 25 & x 7 = 175 \\ 6 & 9 & x 11 = 99 \\ 8 & 1 & x 16 = 16 \\ 10 & 1 & x 19 = 19 \\ 12 & 9 & x 12 = 108 \\ 14 & 25 & x 5 = 125 \\ \hline \sum f(x - \bar{x})^2 & \rightarrow 542 & \\ \hline \end{array}$$

Comparison

— Lower standard deviation (girls) means the

data is more scattered. (more high hours and/or low hours)

- boys play closer to all the same amount - closer to the average/mean

Practice pg 235 # 11, 13

11

| Daily Calls | Freq | # of employees that handle the range of daily calls | freq x mid pt = Total Daily calls         | $f \cdot (x - \bar{x})^2$       |
|-------------|------|-----------------------------------------------------|-------------------------------------------|---------------------------------|
| 26-30       | 2    | 28                                                  | 56                                        | $2 \cdot (28 - 45)^2 = 578$     |
| 31-35       | 13   | 33                                                  | 429                                       | $13 \cdot (33 - 45)^2 = 1872$   |
| 36-40       | 42   | 38                                                  | 1596                                      | $\rightarrow 2058$              |
| 41-45       | 53   | 43                                                  | 2279                                      | 212                             |
| 46-50       | 42   | 48                                                  | 2016                                      | 378                             |
| 51-55       | 36   | 53                                                  | 1908                                      | 2304                            |
| 56-60       | 8    | 58                                                  | 464                                       | 1352                            |
| 61-65       | 4    | 63                                                  | 252                                       | 1296                            |
|             |      | 200 people                                          | Total calls for all employees: 9000 calls | $\sum f(x - \bar{x})^2 = 10050$ |

200 employees handled 9000 calls in a day.

$$\sigma = \sqrt{\frac{\sum f(x - \bar{x})^2}{n}}$$

$$= \sqrt{\frac{10050}{200}}$$

$$= 7.1$$

$$\text{Average} = \text{Mean} = \frac{9000 \text{ calls}}{200 \text{ people}} = 45 \text{ calls/day/person} = \bar{x}$$

Average = 45 but standard deviation = 7.1  
 ↑  
 ok

↑  
 too high  
 ∴ must hire  
 more workers.

③ The mean (average) could be the same;

Ex: Jordana:  $\overset{x}{7}, \overset{x}{7}, 7, 7, 7 \rightarrow \text{avg} = \bar{x} = 7$   
 Jane:  $5, 6, 7, 8, 9 \rightarrow \text{avg} = 7$

Jordana is more consistent, her standard deviation would be zero  $\sigma = \sqrt{\frac{\sum(x-\bar{x})^2}{n}} = 0$

Jane's scores have more variation  $\sigma = \sqrt{\frac{\sum(x-\bar{x})^2}{n}} = \sqrt{\frac{10}{5}} = \sqrt{2}$

| $x$ | $(x-\bar{x})^2$ |
|-----|-----------------|
| 5   | 4               |
| 6   | 1               |
| 7   | 0               |
| 8   | 1               |
| 9   | 4               |
|     | 10              |

5) Group 1

mean:  $\bar{G}_1 = \frac{63 + 78 + 79 + 75 + 73 + 72 + 62 + 75 + 63 + 77 + 77 + 65 + 70 + 69 + 70}{15}$

$$\bar{G}_1 = \frac{1078}{15} = 71.9 \text{ bpm} \quad n = 15$$

| $G_1$ | $(G_1 - \bar{G}_1)^2$ | $(63 - 71.9)^2$ | $\bar{G}_1$ | $\bar{G}_1$ |
|-------|-----------------------|-----------------|-------------|-------------|
| 63    | 79.21                 | 63 - 71.9       | 79.21       | 79.21       |
| 78    | 37.21                 |                 | 26.01       | 26.01       |
| 79    | 50.41                 |                 | 26.01       | 26.01       |
| 75    | 9.61                  |                 | 47.61       | 47.61       |
| 73    | 1.21                  |                 | 3.61        | 3.61        |
| 72    | 0.01                  |                 | 8.41        | 8.41        |
| 62    | 98.01                 |                 | 65.61       | 65.61       |
| 75    | 9.61                  |                 |             |             |

$$\sum (G_1 - \bar{G}_1)^2 = 79.21 + 37.21 + \dots + 65.61$$

$$= 541.75$$

$$\sigma = \sqrt{\frac{\sum (G_1 - \bar{G}_1)^2}{n}} = \sqrt{\frac{541.75}{15}} = 6.0 \text{ bpm}$$

↑  
standard deviation  
for group 1

$$G_1: \bar{G}_1 = 71.9 \text{ bpm} \quad \sigma_1 = 6.0 \text{ bpm}$$

$$G_2: \bar{G}_2 = 71.0 \text{ bpm} \quad \sigma_2 = 4.0 \text{ bpm}$$

$$G_3: \bar{G}_3 = \underline{\hspace{2cm}} \quad \sigma_3 = \underline{\hspace{2cm}}$$

$$G_4: \bar{G}_4 = 76.9 \text{ bpm} \quad \sigma_4 = 1.9 \text{ bpm}$$

(G3) ① mean → add all the pulses for Group 3  
and divide by 15

average or mean  $\bar{G}_3 = 70.4$  and divide by 15

② Standard Deviation formula

$$\sigma = \sqrt{\frac{\sum (G_3 - \bar{G}_3)^2}{n}}$$

$$= \sqrt{\frac{\sum (G_3 - \bar{G}_3)^2}{15}} =$$

③  $\sum (G_3 - \bar{G}_3)^2$

| $G_3$ | $(G_3 - \bar{G}_3)^2$ |
|-------|-----------------------|
| 68    | 5.76                  |
| 75    | $(68 - 70.4)^2$       |
| 78    | $= (-2.4)^2$          |
| :     | $= 5.76$              |
| 79    |                       |

$\sum \rightarrow$  add all the  $(G_3 - \bar{G}_3)^2$  #'s

④ Plug that total value into the  $\sigma$

$$\sigma = \sqrt{\frac{\text{total value}}{15}}$$

$$= 5.7$$

7a) mean =  $\frac{\text{add all TD}}{14} = \frac{147}{14} = 10.5 = \bar{T}$

$$\sigma = \sqrt{\frac{\sum (T - \bar{T})^2}{14}}$$

$$\frac{T}{4} \quad \frac{(T - \bar{T})^2}{4} \quad \leftarrow (4 - 10.5)^2$$

average # of touchdowns per season.

$$\sigma = \sqrt{\frac{\sum (T - \bar{T})^2}{n}}$$

$$\sum (T - \bar{T})^2$$

(add all)

$$= 433.81$$

$$\sigma = \sqrt{\frac{433.81}{14}}$$

$$= 5.6$$

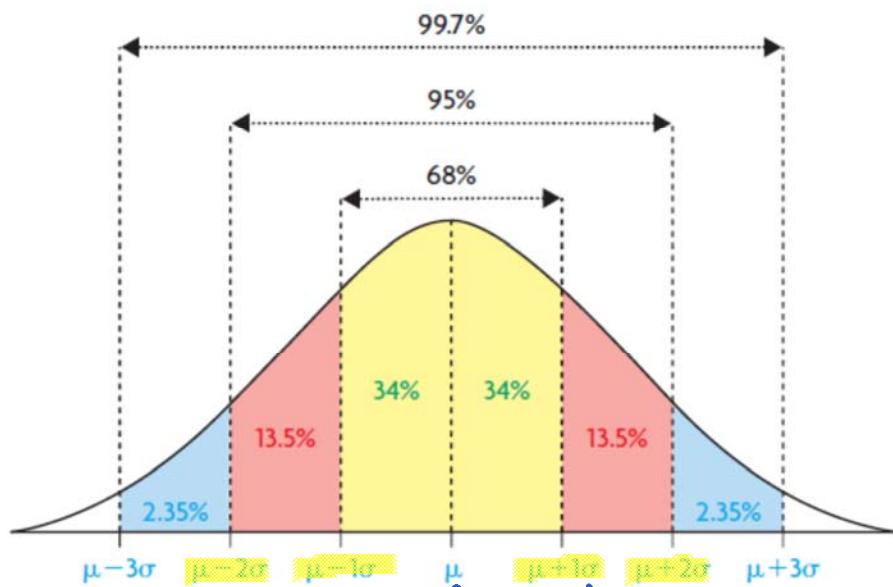
|    | $\frac{(T - \bar{T})^2}{14}$ | $\sigma$                |
|----|------------------------------|-------------------------|
| 4  | 42.25                        | $\leftarrow (4-10.5)^2$ |
| 6  | 20.25                        |                         |
| 14 | 12.25                        |                         |
| 7  | 12.25                        | $\rightarrow 4(12.25)$  |
| 15 | 20.25                        |                         |
| 14 | 12.25                        |                         |
| 23 | 156.25                       |                         |
| 15 | 20.25                        |                         |
| 7  | 12.25                        |                         |
| 17 | 42.25                        |                         |
| 7  | 12.25                        |                         |
| 8  | 6.25                         |                         |
| 3  | 52.56                        |                         |

## 5.4 The Normal Distribution

### The Normal Distribution [5.4]

#### Need to Know

- The properties of a normal distribution can be summarized as follows:
  - The graph is symmetrical. The mean, median, and mode are equal (or close) and fall at the line of symmetry.
  - The normal curve is shaped like a bell, peaking in the middle, sloping down toward the sides, and approaching zero at the extremes.
  - About 68% of the data is within one standard deviation of the mean.
  - About 95% of the data is within two standard deviations of the mean.
  - About 99.7% of the data is within three standard deviations of the mean.
- The area under the curve can be considered as 1 unit, since it represents 100% of the data.



- Generally, measurements of living things (such as mass, height, and length) have a normal distribution.

mean  
"X"

$\sigma$  = standard deviation

## Example 1:

Heidi is opening a new snowboard shop near a local ski resort. She knows that the recommended length of a snowboard is related to a person's height. Her research shows that most of the snowboarders who visit this resort are males, 20 to 39 years old. To ensure that she stocks the most popular snowboard lengths, she collects height data for 1000 Canadian men, 20 to 39 years old. How can she use the data to help her stock her store with boards that are the appropriate lengths?

Mid Pt

| Height (in.)   | Frequency |
|----------------|-----------|
| 60.5           |           |
| 61.5           |           |
| 62.5           |           |
| :              |           |
| 63.64          | 18        |
| 64.65          | 30        |
| 65.66          | 52        |
| 66.67          | 64        |
| 67.68          | 116       |
| 68.69          | 128       |
| 69.70          | 147       |
| 70.71          | 129       |
| 71.72          | 115       |
| 72.73          | 63        |
| 73.74          | 53        |
| 74.75          | 29        |
| 75.76          | 20        |
| 76.77          | 12        |
| 77.78          | 5         |
| taller than 78 | 2         |

77.5  
78.5

1000 people

mean / mode / median should be?  
close to equal if normal distrib.

mean:

$$\frac{60.5 \times 3 + 61.5 \times 4 + 62.5 \times 10 \dots + 78.5 \times 2}{1000}$$

$$\bar{x} = 69.521$$

$$(\sigma = 2.987)$$

median: 500<sup>th</sup> person if lined up  
by height  
500<sup>th</sup> person is 69.5 in tall

mode: "most common"

147 men between 69 and 70 in

$$= 69.5 \text{ in}$$

The mean, mode and median are close to the same, so this seems to be a normal distribution.

Draw Histogram

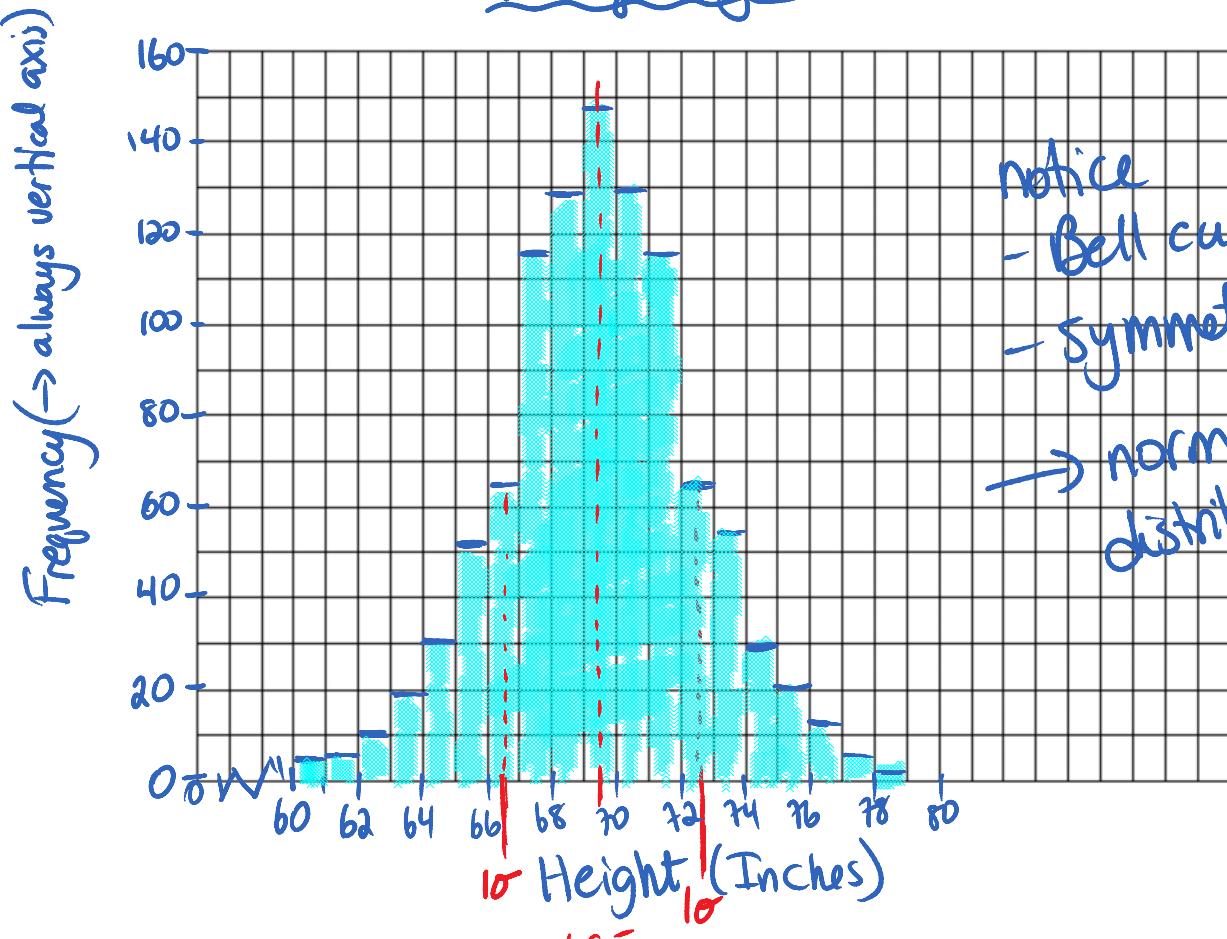
Histogram

# Histogram

Foundations 11

## Average Height

Unit 4: Lesson 4



Check: Are  $68\%$  of the men within  $1\sigma$  of the mean ( $69.5\text{ in}$ )?

$$1\sigma = 2.987 \sim 3 \text{ inches}$$

$\rightarrow$  are  $68\%$  of men between  $66.5\text{ in}$  and  $72.5\text{ in}$ ?

$$66-67 \quad 67-68$$

$$72-73$$

$$64 \text{ men} + 116 + 128 + 147 + 129 + 115 + 63$$

She should have  $76\%$  of her boards to fit men btwn  $66.5$  and  $72.5\text{ in}$

$$\frac{762}{1000} = 76\%$$

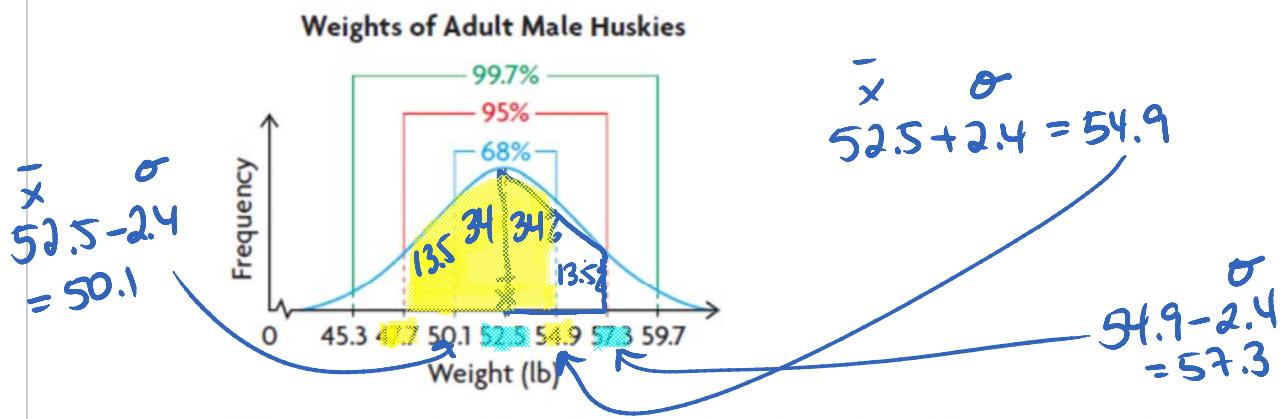
## Example 2:

Jim raises Siberian husky sled dogs at his kennel. He knows, from the data he has collected over the years, that the weights of adult male dogs are normally distributed, with a mean of 52.5 lb and a standard deviation of 2.4 lb. Jim used this information to sketch a normal curve, with

- 68% of the data within one standard deviation of the mean
- 95% of the data within two standard deviations of the mean
- 99.7% of the data within three standard deviations of the mean

$$\bar{x} = 52.5 \text{ lbs}$$

$$\sigma = 2.4 \text{ lbs}$$



What percent of adult male dogs at Jim's kennel would you expect to have a weight between 47.7 lb and 54.9 lb?

$$13.5\% + 34\% + 34\% = 81.5\%$$

What % of dogs would be between 50.5 and 57.3 lbs?

$$34\% + 13.5\% = 47.5\%$$

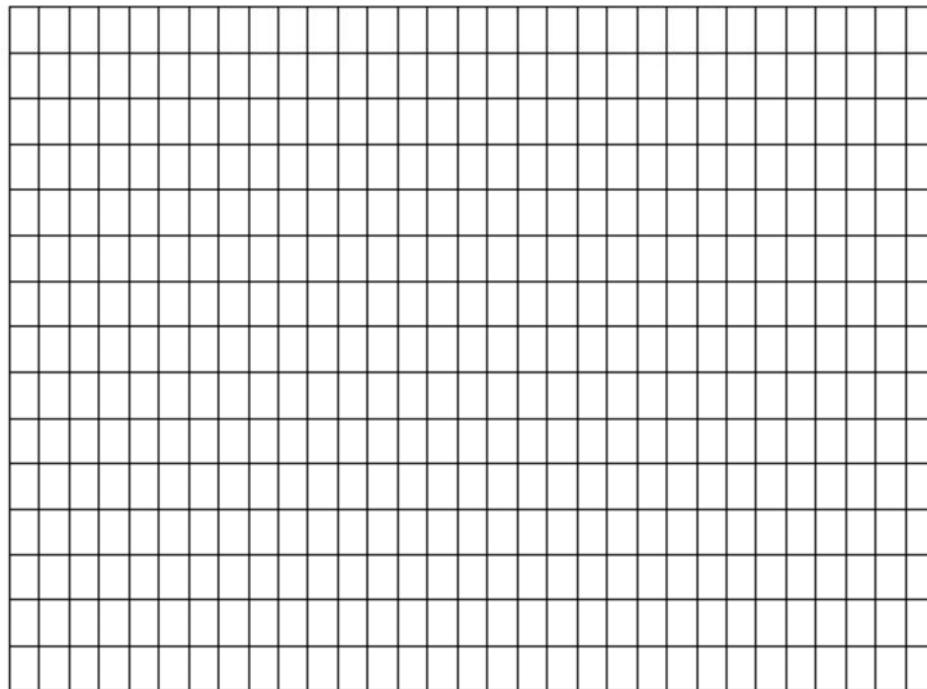
Pg 251 #6, 7

**Example 3:**

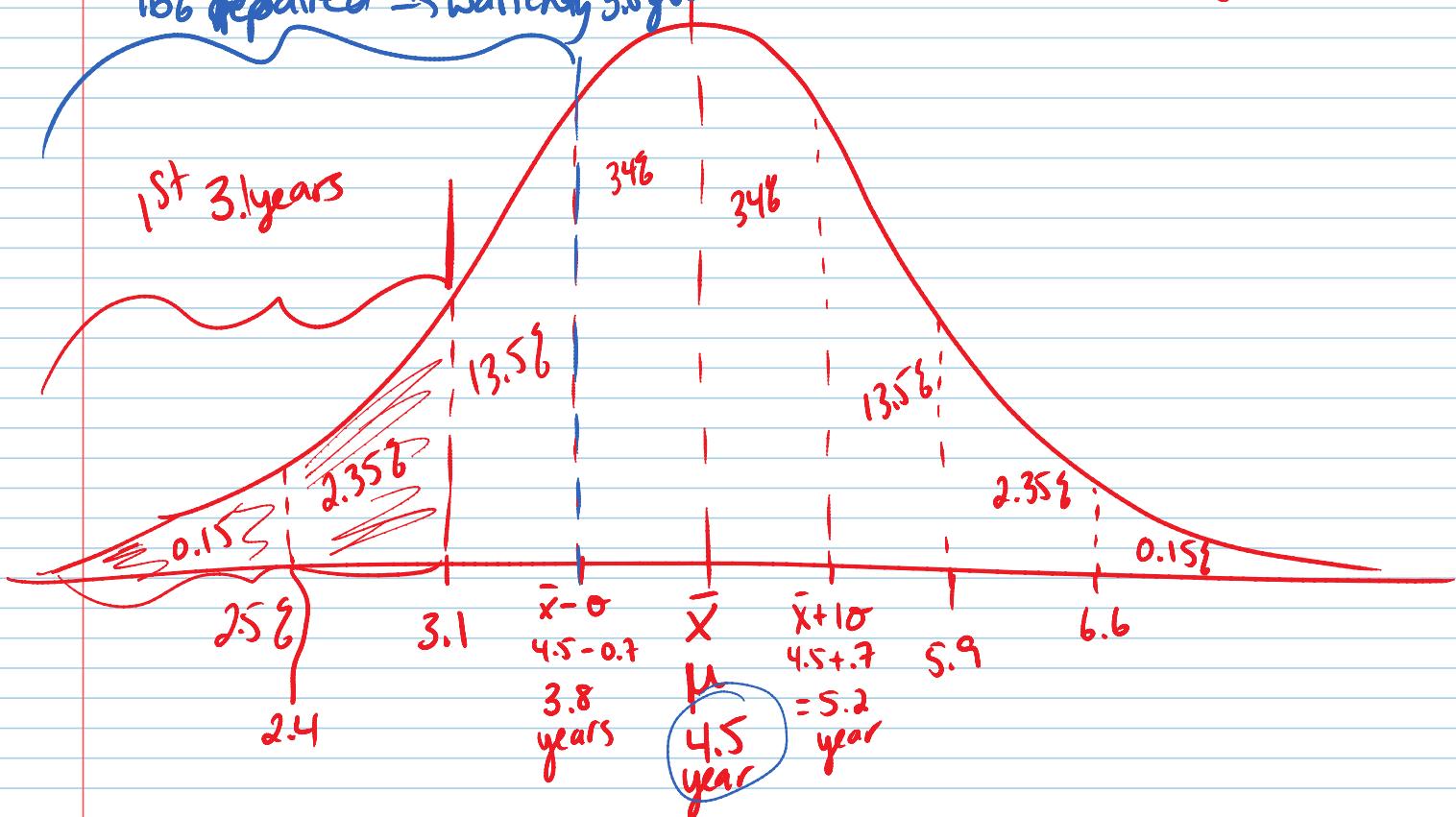
Two baseball teams flew to the North American Indigenous Games. The members of each team had carry-on luggage for their sports equipment. The masses of the carry-on luggage were normally distributed, with the characteristics shown to the right.

| Team  | $\mu$ (kg) | $\sigma$ (kg) |
|-------|------------|---------------|
| Men   | 6.35       | 1.04          |
| Women | 6.35       | 0.59          |

- Sketch a graph to show the distribution of the masses of the luggage for each team.
- The women's team won the championship. Each member received a medal and a souvenir baseball, with a combined mass of 1.18 kg, which they packed in their carry-on luggage. Sketch a graph that shows how the distribution of the masses of their carry-on luggage changed for the flight home.



166 repaired if warranty 3.8 yrs.



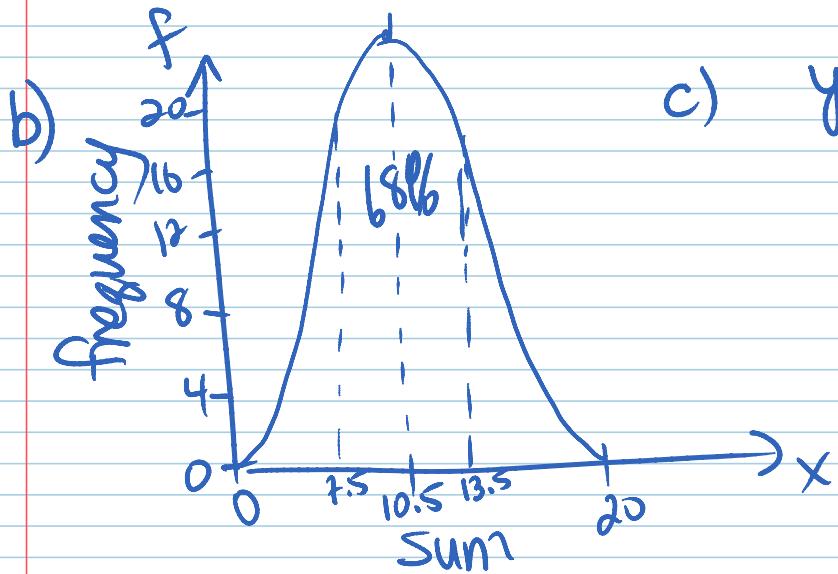
A warranty for 3.1 years (3 years) is given and this means any coffee makers that break down after that, won't get repaired. The company will only have to repair 2.5% (the area under the graph up to 3.1 years).

| 7 | <u>sum</u> | <u>f</u> | Total =<br>Sumxfreq | $(x - \bar{x})^2 \cdot f$                |
|---|------------|----------|---------------------|------------------------------------------|
|   | 3          | 1        | 3                   | $56.25 \leftarrow (3 - 10.5)^2 \cdot 1$  |
|   | 4          | 3        | 12                  | $126.75 \leftarrow (4 - 10.5)^2 \cdot 3$ |
|   | 5          | 6        | 30                  | 181.5                                    |
|   | 6          | 10       | 60                  | 202.5                                    |
|   | 7          | 15       | 105                 | 183.75                                   |
|   | 8          | 21       | 168                 | 131.25                                   |
|   | 9          | 25       | 225                 |                                          |
|   | 10         | 27       | 270                 |                                          |

|    |    |               |
|----|----|---------------|
| 9  | 25 | 100           |
| 10 | 27 | 225           |
| 11 | 27 | 270           |
| 12 | 25 | 297           |
| 13 | 21 | 300           |
| 14 | 15 | 273           |
| 15 | 10 | 210           |
| 16 | 6  | 150           |
| 17 | 3  | 96            |
| 18 |    | 51            |
|    |    | 18            |
|    |    | 2268          |
|    |    | $\sum = 1890$ |
|    |    | $n = 216$     |

$$\text{mean} = \frac{3 \cdot 1 + 4 \cdot 3 + \dots}{216} = \frac{2268}{216} = 10.5 = \bar{x}$$

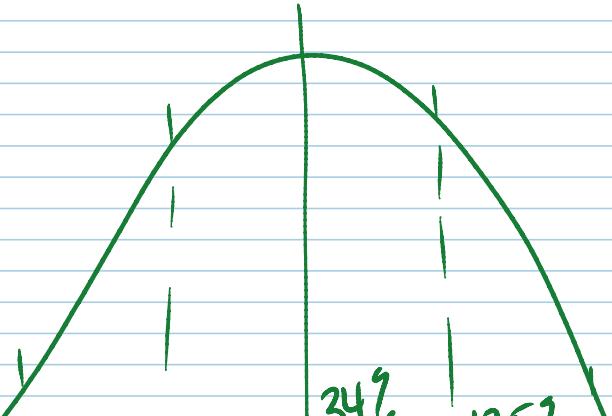
$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2 \cdot f}{n}} = \sqrt{\frac{1890}{216}} = 2.96 = \sigma$$



c) yes is normal distrib.  
symmetrical

1 SD away from mean  
has 34% + 34% of  
the data

10





% that would live beyond 46 years = 2.5%

130 dolphins total

$$2.5\% \times 130 = 0.025 \times 130 = 3.25 \text{ dolphins}$$

→ 3 dolphins